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The numerical solution of nonlinear partial differential equations plays a prominent 
role in numerical weather forecasting, optimal control theory, radiative transfer, and 
many other areas of physics, engineering, and biology. In many cases all that is desired 
is a moderately accurate solution at a few points which can be calculated rapidly. 

In this paper we wish to present a simple direct technique which can be applied in a 
large number of cases to circumvent the difficulties of programming complex algorithms 
for the computer, as well as excessive use of storage and computer time. We illustrate 
this technique with the solution of some partial differential equations arising in various 
simplified models of fluid flow and turbulence. 

1. INTRODUCTION 

The numerical solution of nonlinear partial differential equations plays a 
prominent role in numerical weather forecasting [l], optimal control theory [2], 
radiative transfer [3], and many other areas of physics, engineering, and biology. 
In many cases all that is desired is a moderately accurate solution at a few points 
which can be calculated rapidly. The standard finite difference methods currently 
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in use have the characteristic that the solution must be calculated at a large number 
of points in order to obtain moderately accurate results at the points of interest. 
Consequently, both the computing time and storage required often prohibit the 
calculation. Furthermore, the mathematical techniques involved in finite difference 
schemes or in the Fourier transform methods, are often quite sophiscated and thus 
not easily learned or used. 

In this paper we wish to present a technique which can be applied in a large 
number of cases to circumvent both the above difficulties. We illustrate this 
technique with the solution of some partial differential equations arising in various 
simplified models of fluid flow and turbulence. 

It is not easy to provide any stability analysis because of the nonlinearity of the 
equations considered. In subsequent papers, however, we will examine the stability 
of the numerical scheme applied to various linear equations since some questions 
of independent interest arise. We shall also discuss a number of other types of 
boundary conditions and quadratures. 

2. DIFFERENTIAL QUADRATURE 

Consider the nonlinear first-order partial differential equation 

Ut = g(t, x, u, u& -Go < x < co, t > 0 (1) 

with initial condition 

64x) = w, (2) 

an equation arising in many mathematical models of physical processes. Let us 
make the assumption that the function u satisfying Eqs. (1) and (2) is sufficiently 
smooth to allow us to write the approximate relation 

Ux(ty Xi) 5% $J QijU(ty Xj), i = 1, 2 ,..,, N. (3) 
i=l 

There are many ways of determining the coefficients uii . One method for deter- 
mining these coefficients will be discussed below. Substitution of Eq. (3) into 
Eq. (1) yields the set of N ordinary differential equations 

with initial conditions 

40, Xi> = w4, i=l,2 N. ,***, (5) 
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Hence, under the assumption that (3) is valid, we have succeeded in reducing the 
task of solving Eq. (1) to the task of solving a set of ordinary differential equations 
with prescribed initial values. 

The numerical solution of such a system, Eq. (5), is a simple task for modern 
electronic computers using standard programs with minimal computing time and 
storage (in contrast to the case of partial differential equations). The additional 
storage needed for the solution of a partial differential equation using the differen- 
tial quadrature technique is that of storing the N x N matrix aii . Considering 
that in practice it turns out that relatively low order differential quadrature is all 
that is needed, the total amount of storage and time required on the machine is thus 
quite low. We also note that the number of arithmetic operations to be performed 
for every point is the N additions and multiplications, Eq. (3), plus the amount 
needed for the solution of the set of ordinary differential equations (which is, of 
course, method dependent). 

3. DETERMINATION OF WEIGHTING COEFFICIENTS 

In order to determine appropriate coefficients in the approximation 

U&i) s 5 Ui&j), i = 1, 2 ,..., N, (1) 
j=l 

we can proceed by analogy with the classical quadrature case, demanding that 
Eq. (1) be exact for all polynomials of degree less than or equal to N - 1. The test 
function p&) = &l, k = l,..., N, for arbitrary distinct xi leads to the set of 
linear algebraic equations 

jg uiixj”-’ = (k - 1) x:-l, k = 1, 2 ,..., N. (2) 

which has a unique solution since the coefficient matrix is a Vandermonde matrix 
[41. 

Rather than solving a set of linear algebraic equations, we may readily determine 
the aij explicity once and for all if xi are properly selected. In this discussion the xi 
are chosen to be the roots of the shifted Legendre polynomial of degree N, PN*(x), 
with orthogonality range of [0, 11. The polynomials P,*(X) are defined in terms 
of the usual Legendre polynomials by the relation 

P,*(x) = P,(l - 2x). (3) 

The nodes xa of P,*(x), N = 7,9 are given in Table I, for other values see Ref. [5]. 
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TABLE1 

Nodes ofPN*(x) 

x N=l N=9 

0.02544604 
0.12923440 
0.29101742 
0.50 
0.10292257 
0.80016559 
0.97455395 

- 

0.01591988 
0.08198445 
0.19331428 
0.33181329 
0.50 
0.66212671 
0.80668572 
0.91801555 
0.98408012 

By analogy with Lagrange’s interpolation formula the test function is taken to be 
of the form 

PKW = PN*wKX - Xk) f%‘(XR)I. (4) 

It follows that plc(x) is a polynomial of degree (N - 1) such that &xi) = a,, . 
Using the fact that Eq. (1) is to be exact for U(X) = pk(x), we see that 

aik = P?(xi)/[(xi - xk) p;v*(xk)lp i # k. (5) 

For the case k = i, use of L’Hospital’s rule plus the fact that P,*(x) satisfies the 
differential equation 

x(1 - x”) P:“(x) + (1 + 2x) Pi’(x) + N(N + 1) &v*(x) = 0 (6) 

gives 
akk = t1 - 2xk)/[2xk(xk - l)l. (7) 

Using Eqs. (3), (5) and (7), the constant coefficients a, for any value of N, say 
N = 3,..., 15, can be easily calculated. These values are then used as input data for 
a given problem once N has been chosen. 

4. NUMERICAL RESULTS FOR FIRST ORDER PROBLEMS 

A number of computational experiments were carried out to test the efficacy of 
the above approach. In all numerical examples given, the reduced set of ordinary 
differential equations was solved by an Adams-Moulton integration scheme with 



44 BELLMAN, KASHEF, AND CAST1 

step size of 0.01. The limits of integration (unless specified) were from t = 0 to 
t = 1. 

The first numerical experiment was carried out for the equation 

24&X, t) = x2 - 1/4U,2(X, t), (1) 

u(x, 0) = 0, (2) 

which arises in the theory of dynamic programming [2]. Replacing the derivative 
term on the right side of Eq. (1) by an approximating sum, we obtain the nonlinear 
set of ordinary differential equations 

&(Xi , t) = xi2 - ; % U~jz4(Xj ) t) 
[ I 

2 

3=1 

with initial conditions 

U(Xi ) 0) = 0, i = 1, 2 ,..., N. (4) 

The analytic solution of Eq. (1) is known to be 

u(x, t) = x2 tanh(t), (5) 

which gives a means of checking our numerical results. For a quadrature of order 
N = 7, results are displayed under the column e(l) of Table II. The quantity e(k) 
is defined to be the relative error in computation, i.e., the ratio of the absolute 
error to the absolute value of the actual analytical answer. Index k = 1,2, 3 and 4 
refers to the different experiments considered in this section. 

TABLE II 

Differential Quadrature of Order N = 7 

t x 41) 42) 43) e(4) 

0.1 Xl 6.E-08 2.E-10 2.E-05 8.E-08 
0.1 x4 8.E-08 3.E-10 6.E-06 l.E-10 
0.1 x7 l.E-07 l.E-07 3.E-05 2.E-07 

0.5 Xl 4.E-06 7.E-08 6.E-04 5.E-07 
0.5 X4 9.E-08 2.E-08 8.&05 l.E-07 
0.5 x7 5.E-07 8.E-07 3.E-04 l.E-06 

1.0 Xl 3.E-05 l.E-07 1 .E-04 l.E-04 
1.0 X4 2.E-07 4.E-08 2.E-04 3.E-05 
1.0 X7 7.E-07 2.E-06 l.E-03 l.E-03 
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The second set of numerical experiments concerned a hyperbolic nonlinear 
problem of the form 

w, t> = %!(x, a in O<x<l, O<t<T, (6) 

ax, 0) = &I% for O<xbl. (7) 

This is a well-known test equation which possesses the implicit solution 

24(x, t) = g(x + ut). (8) 

The shock phenomenon inherent in the solution of Eq. (6) can be pushed far into 
the future by a suitable selection of g, and thus will not be considered here. As a 
first example, we let g(x) = 0.1x. In this case the exact solution of Eq. (6) is 

u(x, t) = x/(t - 10). (9) 

Replacing the x-derivative by a differential quadrature of order N = 7 and inte- 
grating the resulting set of equations with T = 1 we obtain the results of Table II, 
Column e(2). 

In both examples 1 and 2, excellent results were to be expected since the solution 
of the equation chosen was a polynomial in the discretized variable. The experi- 
ments were thus tests of the numerical stability of the algorithm. 

We now examine equations where the solution is more complex. Consider 
Eq. (6) with the initial function 

g(x) = (0.1) sin nx. (10) 

The analytic solution is 

24(x, t) = (0.1) sin 7r(x + ut), (11) 

with a well-behaved solution for 0 < t < 1. We compute the solution of Eq. (11) 
by the Newton-Ralphson method, using as our initial approximation the computed 
value obtained from the differential quadrature version of Eq. (6). The relative 
error for N = 7 is given by e(3) of Table II. 

The last experiment in this section involves solving Eq. (6) with the initial 
condition 

g(x) = 0.2x2. (12) 

In this case the explicit analytic solution is 

u(x, t) = (1 - (0.4) tx) - 2/l - (0.8) tx 
(0.4) t2 (13) 

Using the same order quadrature and integration scheme as before, we obtain e(4) 
of Table II. 
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5. SYSTEMS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

Consider next the nonlinear system of equations 

Ut = uu, + vu, ) 4-G Y, 0) = f(x, u), (1) 

vt = uv, $ vu, ) 4% Y, 0) = d-T VI. (4 

We wish to use differential quadrature to obtain numerical values for the functions 
u and v. To check the accuracy of our results, we note that Eqs. (I) and (2) possess 
the implicit solution 

4x, Y, 0 = f(x + w Y + t4, (3) 

4% Y, t> = & + tu, Y + tu>, (4) 

a straightforward extension of the one-dimensional case above. Adopting the 
notation 

&j(t) = 4% > Yi , t>, (5) 

%(O = 4% 3 Yi ,a (6) 

and using the foregoing approximations for the partial derivatives, we may write 
Eqs. (4) and (5) as the system of ordinary differential equations 

k=l k=l 

V&(t) = &j(f) : &kVkj(t) + V,j(t) 2 ajkVik(t), 

?C=l k=l 

i, j = 1, 2,. .., N. 
The initial conditions are 

(8) 

uim = fbi 9 VA (9) 

do) = &i > VA i,j = 1,2 ,..., N. (10) 

Using the above reduction, numerical experiments were carried out for a number 
of different initial functions f and g. Since the solution of Eqs (1) and (2) can also 
possess a shock phenomenon for t%rite t, care was taken in selecting f and g to 
insure that the shock took place for a value of t far away from our region of 
interest. 

The first experiment involved the case 

f(x, u) = dx, u> = x + Y- (11) 
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The explicit solution is given by 

4% y) = + Y) = (x + Y>/(l - w. (12) 

Using Eqs. (7) and (8) with N = 7 and an integration step size of 0.01, the results 
corresponding to e,(l) = e,(l) of Table III were obtained. 

TABLE III 

Differential Quadrature of Order N = 7 

t x Y e,(l) = e,(l) e,(2) 42) 

0.1 
0.1 
0.1 
0.1 
0.1 

0.2 
0.2 
0.2 
0.2 
0.2 

0.3 
0.3 
0.3 
0.3 
0.3 

Xl 
X7 
X4 
Xl 
X7 

Xl 
X7 
x4 
Xl 
X7 

Xl 
X7 
X4 
Xl 
X 

Yl 
Yl 
Y4 
Y? 
Y7 

Yl 
Yl 
Y4 
Y7 
Y7 

Yl 
Yl 
Y4 
Y7 
Y? 

9.E-08 5.E-07 
9.E-08 5.E-07 
9.E-08 9.E-08 
9.E-08 4.E-07 
9.E-08 5.E-07 

6.E-07 
6.E-07 
6.E-07 
6.E-07 
6.E-07 

1 .E-O4 
l.E-03 
3.E-05 
l.E-04 
l.E-03 

3.E-06 
3.E-06 
3.E-06 
3.E-06 
3.E-06 

- 

- 
- 
- 

5.E-09 
5.E-09 
5.E-09 
5.E-09 
5.E-09 

6.E-10 
6.E-10 
6.E-10 
6.E-10 
6.E-10 

- 

Next, the initial functions were changed to f(x, y) = x2, g(x, y) = y. The 
solution for this case is 

u(x, y, t) = [(l - 2tx) - $KXG]/2t2 (13) 

4% Y, 0 = Y/(1 - 6. (14) 

The shock occurs at t = 1/4x. Integrating Eqs. (7) and (8) from t = 0 to t = 0.20 
with N = 7, we obtain e,(2) and e,(2) of Table III which are relative errors in 
functions u and u, respectively. 

The final case was for the initial functions 

f(x, y) = 0.1 sin 77x sin ry/2, (15) 

g(x, y) = 0.1 sin ~rx/2 sin ry. (16) 

581/10/r-4 
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Since no explicit solution exists in this case, Eqs. (3) and (4) together with the 
Newton-Raphson method were used to produce the solution. Table IV summarizes 
the results for the differential quadrature of order N = 7. The values corresponding 
to xk = yk, k = l,..., N for N = 7 are listed in Table 1. 

TABLE IV 

Differential Quadrature of Order 7 

t x Y e,(3) e"(3) 

0.1 

0.1 

0.1 

0.1 
0.1 

0.5 

0.5 
0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

1.0 

1.0 

Xl Yl 

x7 Yl 

X4 Y4 

Xl Y7 

x7 Y7 

Xl Yl 

x7 Yl 

XI Y4 

Xl Y7 

x7 Y7 

Xl Yl 

x7 Yl 

x4 Y4 

Xl Y7 

X7 Y7 

5.E-07 
4.E-06 
3.E-06 
2.E-05 
3.E-05 

7.E-06 
l.E-04 
S.E-05 
6.E-04 
3.E-04 

2.E-05 
7.E-04 
l.E-04 

9.E-05 
1. E-03 

5.E-07 
2.E-05 
3.E-06 
4.E-06 
3.E-05 

7.E-06 
6.E-04 
8.E-05 
l.E-04 

3.E-04 

2.E-05 
9.E-05 
l.E-04 
7.E-04 
l.E-03 

6. HIGHER ORDER PROBLEMS 

We have seen that a good approximation to the first derivative of a function may 
often be obtained in the form 

U&i) Es ; U&&j), i = 1, 2 ,..., N. (1) 
j=l 

Let us now indicate how this idea may be extended to higher order derivatives 
Viewing Eq. (1) as a linear transformation of U, 

24, = Au, (2) 

we see that the second-order derivatives can be approximated by 

u ZZ = (u,), = A(Au) = A-34, (3) 
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Thus higher-order derivative approximations are obtained by iterating the linear 
transformation A. 

When the method is applied to two and higher dimensional systems, the choice 
of N becomes critical. The previous results and the following numerical experiment 
shows that low order approximations can be expected to yield both qualitative and 
quantitative information. 

Let us now apply the foregoing ideas to the treatment of Burger’s equation [6] 

Ut + uu, = wcz 9 E>O (4) 

with pure initial value condition 

40,x) = f(x) (5) 

Burger’s equation enjoys a Riccati-like property in the sense that its solutions 
are expressible in terms of the solution of the linear heat equation 

wt = EW,, 3 (6) 

40, 4 = g(x), (7) 

by the transformation 

u = -2EW,/W, (8) 

f(x) = k&4x)/g(x)* (9) 

This property will allow us to compare our numerical results with analytic solutions 
of Eqs. (6)-(9). 

Adopting the notation 
ui(t) = u(t, Xi) (10) 

yields the set of ordinary differential equations 

k=l j=l 
i = 1) 2 )...) N. (11) 

The initial conditions at t = 0 are determined by the initial function 

%(o) = f(Xi), i = 1, 2 ,..., N. w-9 

In the following numerical experiment, the initial functionf(x) was chosen to be 

f(x) = -2c[b7r cos 7rx + err/2 cos 7rx/2]/[b sin 7rx + c sin rrx/2 + d], (13) 
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where b, c, d are constants. The analytic solution of the heat equation in this case 
is 

w(t, x) = becrnzt sin TX + ce-Cv2tJ4 sin rrx/2 + d. (14) 

Table V summarizes the results of two cases N = 7 and 9 order differential 
quadrature. The values of the constants are taken to be E = 0.01, b = 0.2, c = 0.1 
and d = 0.3. The relative errors e, and e, correspond to the Burgers’ and the 
heat equation, respectively. Values of xI, are those listed in Table I. 

TABLE V 

Differential Quadrature of Orders 7 and 9 

t 

0.1 
0.1 
0.1 
0.1 
0.1 

0.5 
0.5 
0.5 
0.5 
0.5 

1.0 
1.0 
1.0 
1.0 
1.0 

x 

Xl 
X3 
X4 
X5 
X7 

Xl 
X3 
X4 
X5 
X7 

Xl 
X.3 
X4 
X5 
X7 

N=7 

e, 

4.E-04 
2.E-05 
3.E-06 
3.E-05 
5.E-04 

1. E-03 
9.E-06 
1 .E-06 
l.E-05 
2.E-03 

5.E-03 
8.E-05 
5.E-06 
l.E-04 
5.E-03 

ew X 

2.E-05 Xl 
2.E-07 X3 
2.E-07 X6 
2.E-07 X? 
2.E-05 X9 

2.E-04 Xl 
4.E-07 X3 
3.E-07 X5 
3.E-07 X7 
1. E-04 x9 

6.E-04 Xl 
3.E-06 X3 
2.E-07 X6 
3.E-06 X7 
5.E-04 X!3 

N=9 

eu 

l.E-05 
2.E-07 
8.E-09 
2.E-07 
l.E-05 

8.E-05 
l.E-06 
3.E-09 
2.E-06 
l.E-04 

3.E-04 
1.E-05 
2.E-09 
2.E-05 
3.E-04 

cur 

6.E-07 
2.E-09 
1. E-09 
2.E-08 
4.E-07 

9.E-06 
7.E-08 
2.E-09 
6.E-08 
6.E-06 

4.E-05 
l.E-06 
I.E-09 
9.E-07 
3.E-05 

7. ERROR REPRESENTATION 

We are interested in finding the error R’(x) in the N-th order differential 
quadrature 

U’(Xf) = 5 U&4(Xj) + R’(Xi). (1) 
i=l 

The well-known interpolation error R(x) vanishes at N points xi , j = 1, N and 
has N continuous derivatives (provided that H)(x) is continuous). But it is not 
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generally true that RtN)(x) is the N-th derivative of the above function. In order 
to obtain a practical error estimate we observe that by virtue of Rolle’s theorem, 
R’(x) has at least one distinct root Xi ( j = 1, N - 1) in the open interval (xi , xj+J. 
We may also apply Rolle’s theorem to the function 

N-l 

r(X) = R’(X) - b JJ (X - x9), 
j=l 

(2) 

where b(x) is picked in such a way that r(x) = 0 for any fixed x distinct from the 
Zj . So that r@-l)(X) is continuous and has a root x’ in the interval containing x and 
the Xi . From rCN-l)(Z) = 0 follows that 

b = u’^3(Z)/(N - l)! . (3) 

Now substituting this value of b in r(x) = 0 we obtain the final result 

Wx) = (iv - l)! j=l 
U(N)m z (x _ Xj) 

which is valid for all x. 
The same sort of argument shows that the error R”(x) in the approximation 

u - A2u of Section 6 can be written as in Eq. (5) with xj < Zj < Xi+2 . 22 - 

U(N)(q N-2 

m4 = (N _ 2)! ?g (x - %I* 

Assuming that all the xi and x lie in an interval h and that in this interval 
1 Us < K, the bound on the error of Eqs. (4) and (5) is 

,$N-1 

I R’t-4 G K (N _ *)! 3 

hN-2 

I R”(x)l G K (N _ 2j! . 
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